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A B S T R A C T

Breast cancer (BC) is a heterogeneous disease which has been characterised and stratified by many platforms
such as clinicopathological risk factors, genomic assays, computer generated models, and various “-omic”
technologies. Genomic, proteomic and transcriptomic analysis in breast cancer research is well established, and
metabolomics, which can be considered a downstream manifestation of the former disciplines, is of growing
interest. The past decade has seen significant progress made within the field of clinical metabolomic BC research,
with several groups demonstrating results with significant promise in the setting of BC screening and biological
characterisation, as well as future potential for prognostic metabolomic biomarkers.

Introduction

Metabolomics is the study of the multiparametric metabolic re-
sponse of living systems to pathophysiological stimuli or genetic mod-
ifications [1]. The metabolome, a quantitative ensemble of metabolites,
is established via analysis of various biological samples (for example,
blood, urine, saliva, tissue). The metabolome is influenced by both
exogenous and endogenous factors, such as age, gender, race, diet,
presence of disease, and drug exposure. As such, a metabolomic fin-
gerprint – the conglomerate pattern of many different, individually
expressed metabolites – reflects the idiosyncratic biological milieu of
the individual from whom a sample is drawn [2]. As cells cycle – for
example, during neoplastic transformation and subsequent prolifera-
tion, or through an inflammatory or immunological response to ma-
lignancy – the metabolites that form as byproducts of cellular activity
differ from those found in normal, non-malignant cellular turnover
[3,4]. Furthermore, the metabolome expresses dynamic change over
time, concordant with evolving disease trajectory [5]. Metabolomics,
which can be thought of as a downstream manifestation of proteomics,
transcriptomics and genomics, presents potential for a relatively non-
invasive liquid biopsy method that may be utilised in the future to di-
agnose and characterise cancer, assess treatment response and toxicity,
and predict outcome from the outset of diagnosis [6,7].

The main analytic metabolomic platform utilised in metabolomic

research is proton nuclear magnetic resonance (HNMR) spectroscopy,
which produces a metabolic spectrum with a number of peaks. The
idiosyncrasies of these peaks allow the carbon-hydrogen framework of
an organic molecule to be characterised. Nuclear magnetic resonance
(NMR) spectroscopy combines this technique with statistical data
analysis methods, in order to assess and describe metabolic status.
Other metabolomic platforms, such as mass spectroscopy (which often
includes a separation stage via gas chromatography or liquid chroma-
tography) are also utilised by researchers. No single technology is
considered superior; indeed, each has unique strengths and limitations
[8].

Since a seminal review of metabolomics was published by our group
in 2007 [8], the past decade has seen further progress made with regard
to its potential utility within the field of BC. This article intends to serve
as a clinical update and companion to that original review. The original
review also provides a targeted introduction to various technical ap-
proaches to metabolomic identification and analyses.

Utility in screening

The sensitivity of screening mammography is approximately 84%,
with variability according to factors such as age and breast density [9].
A metabolomic fingerprinting approach via nuclear magnetic resonance
and mass spectroscopy has demonstrated 100% accuracy of subsequent
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Random Forest (RF) analyses to identify between plasma samples from
healthy controls and women with BC [10]. This suggests a potential role
in metabolomic screening for BC in the general population, perhaps in
time replacing or enriching the current gold-standard imaging-centred
approach. Sampling and analysis of ductal fluid aspirated from patients
with unilateral early BC (eBC) (with aspirates from the contralateral
breast serving as a control) has demonstrated some feasibility in BC
detection [11]. However, as the microenvironment sampled from the
control breast may not have been representative of a truly disease-free
state (as the microenvironment and resultant metabolome could po-
tentially be altered by the presence of cancer on the contralateral side),
this confounding element could have led to an overestimation of
screening accuracy. The reasonably invasive procedure required by this
sampling technique also raises doubt regarding the desirability and
practicality of its employment in population-based screening. A less
invasive approach with a relatively simple analysis method has been
described, wherein a targeted analysis of 23 amino acids and 26 acyl-
carnitines was conducted on dried blood spot samples [12]. A resultant
model, based on multivariate and regression analysis, demonstrated
sensitivity of 92.2% and specificity of 84.4% in distinguishing between
patients with newly diagnosed BC and normal controls. In an attempt to
identify biomarkers to assist in diagnosis of BC, another group com-
bined bioinformatic pattern recognition techniques with NMR meta-
bolomic analysis of blood and urine samples collected from BC patients
and healthy controls. Nine different metabolites arising in serum, and
two in urine differed significantly in concentration between the groups,
although this metabolomic profile was not confirmed in alternate co-
horts or applied prospectively [13]. Finally, a recent prospective study
comparing serum from patients with invasive BC with healthy, gender
and ethnicity-matched controls showed gas chromatography–mass
spectroscopy (GC–MS) metabolomic profiling differentiated between
the groups with a sensitivity of 96% and specificity of 100% [14].

Metabolomics role in tumour biology characterisation

Differences in metabolomic profiles according to race

An untargeted metabolomic analysis of malignant breast tumours
derived from African American patients via comprehensive GC–MS and
liquid chromatography methods identified 418 separate metabolites, of
which 31.8% occurred at statistically different rates between oestrogen
receptor positive (ER+) and triple negative patients [15]. Increases in
activity of biochemical pathways involved in energy metabolism (sev-
eral metabolites notably involving the glycolytic pathway) and trans-
methylation were noted in the triple negative BC cohort. The same
group previously showed via PCR analysis that methylation of multiple
genes occurs at higher frequency in African American women with
hormone receptor negative disease, compared to Caucasian women
[16]. This confirms similar, previously reported findings which com-
pared a native Korean cohort to a Caucasian population from the United
States [17], wherein the former cohort demonstrated promoter hy-
permethylation. Distinguishing differences in global metabolic profiles
were observed by another group when comparing plasma samples from
African American and Caucasian American women [18]. Recently,
comparative high resolution magic angle spinning (HR-MAS) NMR
analyses of triple negative and luminal A breast tissue derived from
African-American and Caucasian women revealed different metabolic
profiles according to subtype and race alike [19]. Triple negative tu-
mours in African-American women exhibited higher levels of glu-
tathione, choline and glutamine, as well as metabolic changes con-
sistent with decreased mitochondrial respiration and increased
glycolysis in parallel with decreased levels of ATP. Conversely, triple
negative tumours in Caucasians showed indication of increased pyr-
imidine synthesis. These collective findings prompted the authors to
surmise that such unique metabolic alterations may in the future guide
possible novel treatment targets for triple negative disease.

Differences between molecular subtypes according to metabolomic analysis

Significant differences in metabolomic spectra have been observed
when comparing between triple negative and triple positive disease
(77.7% accuracy), ER+ and oestrogen receptor negative (ER−) status
(72.2% accuracy) and human epidermal growth factor receptor 2
(HER2) positive and negative status (69.1% accuracy) [20]. This group
observed that triple negative disease was characterised by lower levels
of glutamine and higher levels of glutamate, consistent with increased
glutaminolysis-based metabolism. Increased transcriptional activity of
c-MYC with consequent alterations in glutaminergic metabolism has
been shown by others to be a hallmark of triple negative disease
[21,22]. Liquid chromatography of serum collected from BC patients
and healthy controls tested the levels of 15 amino acids, eight of which
were elevated in pre (but not post-) operative BC samples [23]. These
amino acids were elevated most markedly in those with basal-like BC,
compared to the more indolent luminal A subtype.

Another group has demonstrated metabolomic divergence asso-
ciated with different BC molecular subtypes, with metabolomic phe-
notypes exhibiting different patterns of metabolite concentrations ob-
served between HER2+ and HER2− disease, and ER+ and ER− status
[24]. Receiver operating characteristic (ROC) analysis of a panel of
eight metabolites tested their performance in classifying BC subtypes,
yielding a potential diagnostic value of 0.89. The metabolomic phe-
notype of HER2+ disease was characterised by increased glycolysis, as
well as increased fatty acid biosynthesis and gluconeogenesis. The
Warburg effect describes the phenomenon in which cancer cells rely
upon glycolysis rather than mitochondrial oxidative phosphorylation to
generate ATP, regardless of available oxygen levels [25,26], though the
reasons behind this predilection for a less efficient form of metabolism
are not clear. Many metabolomic studies have referenced the presence
of glycolytic markers as an indication of the Warburg effect driven by
malignancy, and it remains a metabolic pathway of ongoing interest in
cancer research [27,28].

Potential to refine existing molecular subtypes

A study combining transcriptomic and metabolomic analysis of
malignant breast tumours via HR-MAS magnetic resonance spectro-
scopy (MRS) showed potential for metabolomic analysis to add re-
finement to existing molecular classification [29]. Metabolomic and
gene expression data were merged by multivariate analysis as a means
of identifying different intrinsic groups, with the majority of the sam-
ples analysed falling under luminal A classification. HR-MAS MRS
identified three distinct metabolomic clusters within the luminal A
group, which suggests established molecular groups may have potential
for further sub-classification down metabolomic lines. Intriguingly, one
of these sub-clusters showed significantly lower glucose and higher
alanine levels than the other luminal A clusters, metabolites that may
be regarded as surrogate markers of glycolic activity. A luminal A sub-
cluster exhibiting a higher Warburg effect than others might be hy-
pothesised to represent a comparatively more aggressive clinical sub-
phenotype, though unfortunately the group had no clinical data to
correlate with this finding. The potential to subcategorise within het-
erogeneous molecular subgroups is compelling, in that this may facil-
itate personalised refinement of treatment options. Metabolomic, pro-
teomic and transcriptomic integrative clustering has also demonstrated
a clinically significant split into further parts within the luminal A
subtype [30], further establishing the potential for finer subdivisions.
Haukaas et al. merged transcriptomic, metabolomic and protein ex-
pression data (including PAM50 subtyping) derived from a larger, un-
treated BC cohort to establish clusters based on metabolic expression
[31]. Three distinct clusters were identified, with one cluster sharing
similarities with that previously described by Borgan et al. [29],
wherein surrogate markers of Warburg metabolism were noted. All
three clusters identified by Haukaas et al. [31] included non-luminal A,
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basal and HER2 enriched samples, suggesting that metabolomic clus-
tering functions not just as a subdivider of existing heterogeneity within
predefined molecular groups.

Pre-clinical implications for BRCA mutated and/or triple negative disease

NMR-based metabolomic characterisation of the metabolic re-
sponses of three different BC cell lines in response to the poly (ADP-
ribose) polymerase (PARP) inhibitor, veliparib, revealed several cell
line independent metabolic changes [32]. PARP inhibition was asso-
ciated with enriched nitrogen metabolism, glycine, serine and threo-
nine metabolism, aminoacyl-tRNA biosynthesis and taurine and hypo-
taurine metabolism in all three cell lines. PARP inhibition and radiation
appeared to induce a similar metabolic response in BRCA-mutant
HCC1937 cells, but not in MCF7 or MDAMB231 lines. The same group
also conducted NMR analyses of the metabolic responses observed in
cell lines in response to different classes of DNA-damaging agents,
which demonstrated the ability of metabolomics to classify the type of
DNA damage seen [33]. Another group successfully utilised liquid
chromatography-mass spectrometry (LC-MS) based metabolomic pro-
filing in delineating between BC cell lines according to their BRCA1
genotype [34]. Based on those in vitro findings, the group performed
metabolomic analysis on plasma of patients (n=35) with triple nega-
tive hereditary breast cancer syndrome, who were carriers and non-
carriers of BRCA1 mutations. In the carrier group, plasma levels of
adenine, N6-methyladenosine and 1-methyladenosine were sig-
nificantly lower than in non-carriers, and could distinguish between the
two groups, leading the authors to postulate these metabolites may be
potential BC biomarkers connected to BRCA1.

Predicting treatment response

A pilot study conducted by our group ran metabolomic analysis via
NMR spectroscopy on serum collected from patients enrolled in the EGF
30,001 trial, which saw patients with advanced BC randomised to pa-
clitaxel plus lapatinib or placebo [35]. Metabolomic profiles were
compared to time to progression, overall survival and treatment toxi-
city. A notable aspect of EGF 30,001 was that the majority of subjects
enrolled had HER2- disease, and as such, this trial was not an ideal
source for a retrospective study that set out, in part, to test a correlation
related to response to anti-HER2 treatment. Overall, no significant
correlation was found with outcome or toxicity in the unselected po-
pulation. However, the small subset of HER2+ subjects (N=49) who
received lapatanib showed the metabolomic profile had significant
predictive accuracy with regards to time to progression and overall
survival, though the small number of subjects in this subset obviously
limits the conclusions that may be drawn from these findings.

These findings were contrasted by analysis of preoperative serum
samples collected from eBC patients prior to uniformly mandated
neoadjuvant chemotherapy (epirubicin plus cyclophosphamide, then
three weekly docetaxel ± trastuzumab), to assess whether metabo-
lomics could predict response to chemotherapy [36]. Following
neoadjuvant chemotherapy, patients (N=28) were divided according
to radiological and histological response into complete (pCR), partial,
or no response/stable disease groups, with pre-operative serum samples
being analysed via a combination of NMR and LC-MS. The concentra-
tions of four metabolites – linolenic acid, glutamine, threonine and
isoleucine – were identified as statistically different when comparing
response to chemotherapy, and a predictive model based on ROC
analysis accurately identified 80% of those patients who did not
achieve pCR. However, explaining the mechanisms underlying the
correlation between altered metabolite levels and responsive disease
was beyond the scope of this pilot study.

A later study reduced the potential bias of histological heterogeneity
by enrolling only HER2+ eBC patients ahead of receiving neoadjuvant
paclitaxel-trastuzumab treatment, subsequently correlating targeted

serum-based metabolomic data to histological response. In serum col-
lected prior to neoadjuvant treatment, higher levels of spermidine and
lower levels of tryptophan were observed in patients who achieved pCR
[37]. Not unlike its predecessors, this study was limited by a small
sample size (N=34), and such results are also difficult to interpret in
that it is not clear whether the observed result comments upon the
response to a treatment combination, or more specifically to a single
agent.

Within a neoadjuvant setting, another group attempted to correlate
HR MAS MRS derived metabolomic profiles expressed in pre-treatment
tumour core biopsies with pathological response [38]. No single me-
tabolite was identified via univariate analysis that showed statistical
significance with regard to pathological response, though there was a
trend towards lower levels of choline-containing metabolite con-
centrations and phosphocholine/creatine ratios in the pCR group. Dis-
crimination between treatment outcome groups was attained via mul-
tivariate analyses in OPLS-DA models built from the metabolomic
profiles. These findings provide contrast to results published a year
earlier which described significant differences in tumour metabolomic
changes in response to neoadjuvant chemotherapy, that predicted BC
survival, but not clinical response [39]. Pre- and post- treatment
biopsies were analysed by MR MAS MRS and correlated to patient
outcome. Subjects who died within five years of receiving treatment
were found to have post-treatment increases in lactate (perhaps re-
flective of increased glycolysis), whereas patients who were alive be-
yond five years had an increase in glucose and decrease in glycine and
choline-containing compounds. Clinical response to neoadjuvant
therapy was not related to metabolic response, in contrast to the clear
correlation between metabolic response and clinical outcome. Similar
metabolic responses were observed in patients who received neoadju-
vant paclitaxel, compared to those who received epirubicin.

Anticipating diagnosis of recurrence

Perhaps of most interest to clinicians is the potential metabolomics
may have in generating prognostic biomarkers. In 2010, the first evi-
dence supporting metabolomics as a potential biomarker of recurrent
disease was published [40]. A retrospective analysis was performed on
56 patients with eBC, all of whom had serial serum samples collected
over six years. Twenty subjects were diagnosed with recurrent disease
during that period. Via multivariate analysis, eleven metabolite mar-
kers that differentiated between those with recurrent disease and those
without were identified; this model performing with a sensitivity of
86% and a specificity of 84%. Metabolomic signatures predicted re-
currence an average of 13months before CA27.29 counts rose in 55% of
patients with recurrence, though it must also be acknowledged that
tumour markers are not routinely used or recommended in the sur-
veillance of otherwise asymptomatic patients under surveillance fol-
lowing curative treatment [41,42]. Early detection of ipsilateral re-
currence or a second contralateral primary is known to improve
survival [43,44], but early detection of asymptomatic metastatic dis-
ease is of less clinical utility. Nevertheless, such strategies could argu-
ably benefit those patients with new, symptomatically undetectable
metastatic BC, who would be considered eligible for targeted palliative
therapies in the setting of low volume disease. By making a diagnosis
before the burden of metastatic disease progresses to crisis levels, ag-
gressive upfront cytotoxic salvage intervention may also be avoided,
and less onerous targeted therapies instituted in the first line instead.

Estimating prognosis in eBC patients

In the era of personalised medicine, development of tailored onco-
logical treatment for breast cancer is lagging. Biomarkers such as hor-
mone receptors and HER2 over-expression has allowed some precision
in prognostication and treatment decisions, but the heterogeneous
nature of BC has meant that discriminating within biological and
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molecular classifications still requires refinement. The ability to discern
between patients with eBC at high risk of recurrent disease, and those
cured by locoregional therapy alone would be invaluable – allowing
clinicians to selectively offer more aggressive adjuvant therapies to the
former group, whilst sparing those at lower risk exposure to potentially
toxic treatments which offer little, if any commensurate benefit.
Historically, the risk of recurrent or eventual metastatic disease in eBC
has been determined by assessing clinicopathological features, with
certain factors (for example, high tumour grade, nodal involvement or
HER2 over-expression) known to be associated with a poorer prognosis.
Further refinement in prognostic risk estimation has been brought by
validated online prognostic tools such as Adjuvant!Online and PREDICT
– models built from data derived from cancer registries, trials group
estimates and population-based mortality and morbidity databases –
which provide an estimate of the potential benefit of systemic therapy
relative to manifested clinicopathological features. However, these
tools of prediction are blunt, and the level of authority they command is
limited by shortcomings such as inability to generalise to certain patient
subgroups [45,46], and restrictions in applying these models across
ethnic demographics [47]. Evolving knowledge of BC molecular sub-
types has enhanced clinical decision making. However, formally as-
certaining the molecular subtype of all eBCs via mRNA expression
profiling as routine practice is prohibitively time consuming and ex-
pensive. Whilst surrogate clinical definitions of subtypes have been
proposed [48], they are yet to reach international consensus [49–51].
Furthermore, there is evidence to suggest a great deal of heterogeneity
exists within defined intrinsic subtypes, suggesting that further deli-
neation within and between groups is still required [52–54].

Genomic assays such as Oncotype DX and Mammaprint can provide
some reassurance in decision making when residual uncertainty exists
after potential risk is initially evaluated. However, these assays are not
without shortcomings, and perhaps most significantly, genomic assays
can over-estimate the risk of recurrence. For example, in the NSABP
B20 trial, which studied a node negative, ER+ eBC cohort, of those
with a high Oncotype recurrence score who received hormonal therapy
alone, 60.5% remained free of distant disease at ten years [55]. Simi-
larly, retrospective analysis of ER+, node positive eBC subjects en-
rolled in the SWOG S8814 trial demonstrated 43% of those with a high
Oncotype score who received adjuvant tamoxifen alone remained
event-free at ten years [56]. The first data emerging from the MINDACT
trial demonstrates that of those enrolled subjects who were at both high
genomic and clinicopathological risk (and therefore recommended to
receive chemotherapy), 90.6% remained free of distant disease at five
years – a significant proportion of this cohort will have been cured with
surgery alone [57]. This echoes outcome data derived from seminal BC
trials, wherein 40% of patients with ER−, node negative eBC treated
with surgery alone remained recurrence free at twenty years. Of those
with node positive disease treated with surgery alone, 22% were re-
currence free at thirty years [58]. These examples underline the di-
lemma of treating luminal disease: in this subgroup, which is char-
acterised by an overall relatively favourable prognosis, there remains
an unmet need for refinement in prognostic techniques, as current as-
says still over-estimate the risk of recurrence in some cases, thus
overstating the relative potential benefit of adjuvant chemotherapy.

Whilst existing prognostic markers assess the potential, proportional
benefit of adjuvant therapies by examining the primary tumour, me-
tabolomic analysis, derived from the periphery, detects the presence of
residual disease, which represents the absolute risk of eventual disease
relapse (see Fig. 1). One criticism of existing prognostic markers is that
they are based on analysis of centrally-derived tumour tissue. Most
cases of eBC are treated with upfront surgery, which by definition
physically removes the factor upon which risk of recurrence is calcu-
lated. Once a malignancy has been macroscopically cleared, the esti-
mation of residual risk should therefore be made according to what
potentially remains: occult micrometastatic disease, rather than solely
inferring risk and prospective benefit from adjuvant therapies

according to characteristics of a tumour which has been excised in the
interim.

Our group has established a reproducible method of quantifying
individual metabolomic fingerprints, and we have shown that meta-
bolomics has an ability to accurately discern between advanced and
early disease [59]. Serum samples of patients with eBC were analysed
by NMR spectroscopy, with metastatic samples serving as a control
reference. Characteristic clustering of metabolites – the metabolomic
“fingerprint” – consistently differed between the two groups, allowing
reliable separation between the early and metastatic cohorts. Some
metabolomic fingerprints expressed in subjects with early disease more
closely resembled a metastatic fingerprint, with a concordant metabo-
lomic high risk of recurrence (reflective of the hypothesis that a mis-
classification of “metastatic” in an eBC sample indicated the presence of
micrometastatic disease): the closer to the metastatic cluster bar-
ycentre, the greater the estimated metabolomic risk. Accurate dis-
crimination between early and metastatic groups was made with 75%
sensitivity, 69% specificity and a predictive accuracy of 72%. Meta-
bolomic fingerprinting was employed by another group who confirmed
the ability of metabolomics to discriminate between early and meta-
static BC [60]. Their profiling model performed with sensitivity and
specificity of 89.8% and 79.3% respectively; slightly higher than the
results observed by our group. While the concentration patterns of in-
dividual metabolites found in metastatic samples were not identical
between the two studies, alternations in glucose and lipids were noted
by both groups. Oakman et al. [59] compared metabolomic risk for
each sample to the corresponding estimated 10 year mortality predic-
tion by Adjuvant!Online, wherein poor concordance was found be-
tween the two. This remains the main limitation of this study: meta-
bolomic risk was compared to an estimate of mortality according to the
computer model of Adjuvant!Online, rather than actual follow up data.

Building on our findings published in 2011 [59], our group retro-
spectively tested a metabolomic prognostic model for disease relapse in
biobank-derived samples of patients with operable, predominantly
ER− eBC, treated at a single institution [61]. Metabolomic fingerprints
were derived from post operative serum samples, and compared against
a control group (comprised of samples from subjects with metastatic
BC) via an RF classifier [62] algorithm, which was utilised to build
discriminative models between the two groups. Similar to our previous
study, the metabolomic risk of each eBC subject was based on the de-
gree of similarities observed when compared to control metastatic BC
profiles, with the methodology underpinning the design of the RF al-
gorithm described in detail elsewhere [61,63]. A low RF score derived
from an eBC sample correlated with a low probability of recurrence due
to a presumed absence of occult micrometastatic disease, whereas a
high score reflected a greater estimated risk of recurrence (see Fig. 2).
Next, subsequent ROC analysis compared the RF scores to actual clin-
ical outcome in both a training and validation set – in contrast to the
group’s previous study which relied up on Adjuvant! Online estimates
as a surrogate for follow up data. Relapse was predicted with high
sensitivity and specificity in the training set (90% sensitivity, 67%
specificity, and 73% predictive accuracy), and subsequently reproduced
within the independent validation eBC set (82% sensitivity, 72% spe-
cificity, and 75% predictive accuracy). Comparatively worse disease-
free survival rates were seen in those with high estimated risk of re-
currence (see Fig. 3).

We subsequently reproduced similar findings, using the same
methodology, within an ER+ eBC cohort, analysing serum collected in
several clinical centres in South-East Asia as a part of an unrelated
Phase III adjuvant trial, with serum collected as a part of a metastatic
BC trial serving as a model calibrator [63]. The RF model demonstrated
an accuracy of 84.9% in correctly discriminating between eBC and
metastatic disease. Fig. 4 illustrates the correlation between nodal
status and estimated metabolomic risk. In correlating the estimated
metabolomic risk to actual recurrence rates, the model performed with
71.3% specificity and 70.8% specificity. Again, there were clear
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differences in outcome between high and low risk groups as estimated
by metabolomic profiling (see Figs. 5 and 6). The majority of studied
samples came from women with relatively advanced disease. The ma-
jority had node positive disease, with 27% having 1–3 involved lymph
nodes, and a further 31% with ≥3 positive nodes. Two thirds of the
cohort had primary tumours measuring 2–5 cm (67.1%), and 27% had
T3 disease (tumour dimension>5 cm). Whilst this preponderance of
advanced disease is reflected by an overall high rate of disease recur-
rence, which is indeed not representative of the generally favourable

outlook normally seen in eBC (see Fig. 5), subset analysis of a subgroup
with pathologically lower risk disease (node negative, primary tu-
mour>2 cm) illustrates fewer recurrence events, yet still offers a
strong indication of the prognostic power of metabolomic analyses
nonetheless (see Fig. 6). This study also differed from its biobank-based
predecessor, in that samples were derived from multiple centres in
several countries, in the preoperative setting – further demonstrating
the ability of metabolomic analysis to meaningfully estimate risk of
eventual relapse, even prior to the primary malignancy being surgically

Fig. 1. Comparison between the concept of predictive biomarkers, and alternative “disease detector” measures that are capable of detecting residual, micro-me-
tastatic disease.

Fig. 2. Entire ER negative dataset described in Tenori et al. [61], illustrating estimated risk of recurrence as calculated by metabolomic profile, subdivided by nodal
status.
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excised. Additionally, as serum samples were sourced from archived
trial material, this guaranteed each patient received uniform treatment
(bilateral oophorectomy and tamoxifen) as mandated by trial protocol,
thus reducing confounding potential in subsequent metabolomic ana-
lyses.

These two studies are in partial accordance with previously pub-
lished data [65]. Metabolomic predictions of five-year survival within
an ER+ subgroup made via HR MAS MRS analysis of tumour tissue was
found to outperform predictions made according to clinical parameters,
with five-year BC survival correctly predicted by metabolomic analysis
with a sensitivity of 71.6%, and specificity of 70.4%. Higher levels of
glycine and lactate correlated with poorer survival. In contrast to po-
sitive results demonstrated by Tenori et al. [61], discriminating meta-
bolic differences were not observed in a corresponding ER negative

subgroup, though this cohort was comparatively small (N=24) and
may have lacked sufficient numbers to demonstrate efficacy. It is also
unclear as to whether either group contained HER2+ subjects, which
may also have had some bearing on prediction and outcome alike.
Nevertheless, these studies collectively demonstrate capacity for me-
tabolomics in identifying patients with eBC who are at increased risk of
eventual relapse. This may in turn facilitate greater sophistication in
clinical decision making with regards to adjuvant therapies, by adding
further clarity to existing prognostic markers such as clin-
icopathological risk factors and genomic assays.

Future strategies

To expand upon work already completed by our group, our next

Fig. 3. Overall ER negative dataset, plotting actual disease-free survival over time (measured in years) according to estimated metabolomic risk score [61].

Fig. 4. Entire ER positive dataset described by Hart et al. [63], illustrating estimated risk of recurrence as calculated by metabolomic profile, subdivided by nodal
status.

A. McCartney et al. Cancer Treatment Reviews 67 (2018) 88–96

93



objective is to provide prospective validation to previous findings with
regards to the potential role for metabolomics as a prognostic bio-
marker. The risk of recurrence as calculated by Oncotype DX will be
combined with metabolomic serum analysis in patients with ER+,
HER2- eBC in an attempt to achieve greater precision in recurrence risk
prediction. We anticipate that the low, intermediate and high Oncotype
recurrence risk categories will be subdivided again by metabolomic
profiling, and that within single Oncotype subsets, those with a pre-
dicted low risk of recurrence according to metabolomic analysis will
demonstrate greater disease-free survival than those with predicted
high metabolomic risk. This prospective cohort study will commence
enrolment in two cancer centres in Italy in 2018.

The Breast Cancer to Bone (B2B) Metastases Research Program is a
large Canadian multi-project initiative that has proposed a core plan
designed for further discovery into the role metabolomic profiles may
play in the prediction and early diagnosis of bone metastases [66].
Recruitment is underway, having begun in 2010, and results are
awaited with interest.

Conclusion

In the absence of a conclusive and refined understanding of BC
subtypes and the heterogeneity that exists within this large disease
entity, a truly personalised management approach cannot be achieved
at the individual level. Metabolomics, particularly when harnessed with
other validated tools of prognostication, may prove a key figure in ul-
timately achieving this aim in the setting of prediction of recurrence
and estimating prognosis via liquid biopsy. Similarly, metabolomics
may potentially offer a relatively non-invasive alternative or enhance-
ment to BC screening, biological tumour characterisation and predic-
tion of treatment response. In the domain of –omic sciences, metabo-
lomics may once have been considered an esoteric field, but should now
be regarded in the mainstream.
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